STEPHEN P. SWINTON (106398)
J. CHRISTOPHER JACZKO (149317)

COOLEY GODWARD LLP
4401 Eastgate Mall
San Diego, California 92121
Telephone: (858) 550-6000
Facsimile: (858) 550-6420
R. WILLIAM BOWEN, JR. (102178) GEN-PROBE, INC.
10210 Genetic Center Drive
San Diego, California 92121-4362
Telephone: (858) 410-8918
Facsimile: (858) 410-8637
Attorneys for Plaintiff
GEN-PROBE, INCORPORATED

UNITED STATES DISTRICT COURT
SOUTHERN DISTRICT OF CALIFORNIA

GEN-PROBE INCORPORATED,
Plaintiff,
v.

VYSIS, INC.,
Defendant.

No. 99 CV 2668 H AJB
SEParate Statement of Undisputed Facts in Support of Plaintiff Gen-Probe Incorporated's Motion for Partial SUMMARY JUDGMENT OF NON-INFRINGEMENT UNDER THE DOCTRINE OF EQUIVALENTS

Date: November 13, 2001
Time: 10:30 a.m.
DEPT.: Court Room 1
Honorable Marilyn L. Huff

Plaintiff Gen-Probe Incorporated respectfully submits the following statement of undisputed material facts, together with references to supporting evidence, in support of its motion for partial summary judgment of non-infringement under the doctrine of equivalents.

1. Vysis has previously admitted that TMA is a sequence-specific amplification method and does not use methods of non-specific amplification.
2. All of the claims of the ' 338 patent incorporate an "amplification" element. The Court's June 20th Order confirms that each of those claims and incorporated amplification elements literally encompasses only nonspecific amplification techniques.
3. The differences between specific (Mullis Decl., I 7.) amplification methods and non-specific amplification methods are substantial.
4. The methods do not perform the same (Mullis Decl., 17.) function in the same way to achieve the same result.
5. Gen-Probe's TMA method functions to (Mullins Decl., \| 18.) exponentially increase both the absolute and relative amount of a particular nucleic acid sequence of interest in a mixture of nucleic acids.
6. In direct contrast, non-specific amplification functions only to increase the absolute amount of all nucleic acids present in a sample and does not increase the relative amount of a particular

\square

\qquad
(Mullis Decl., ๆ18.)

Defendant's May 25, 2001 Statement of Disputed Facts In Opposition to Plaintiff's Motion for Partial Summary Judgment, Facts No. 26-28.

June 20, 2001 Order Granting Motion for Partial Summary Judgment of NonInfringement of the ' 338 patent, claim construction of the term "Amplifying" as found in the ' 338 patent at 11:5-6.

nucleic acid sequence of interest.
7. Vysis' own expert has admitted the differences in function between specific amplification and non-specific amplification.
[N]on-specific amplification techniques amplify all of the nucleic acid in a sample, both target and non-target nucleic acid. Specific amplification techniques, in contrast, are intended to amplify only the target nucleic acid.
8. When a particular nucleic acid sequence of (Mullis Decl., \| 19-22.) interest is contained in a mixture of nucleic acids in a clinical sample, TMA enables a person skilled in the art to exponentially copy the sequence of interest.
9. This makes it easy to determine whether or not a pathogenic microorganism is hiding among millions of other organisms in a patient sample.
10. Specific amplification is useful for diagnostic purposes even without a target capture step. In contrast, non-specific amplification is not a viable diagnostic method because it does not increase the amount of a target nucleic acid relative to everything else. Vysis' own expert witness has admitted this important distinction:

Persing Declaration at page 5 lines 1-6 (emphasis added).
 prior to amplification, non-specific amplification would not be a viable technique for detecting target nucleic acids in a sample because, as pointed out in the quoted paragraph, non-specific amplification causes the replication of virtually any nucleic acid sequence, including other irrelevant nucleic acids in the sample.
11. Therefore, Dr. Persing has admitted that
"without the invention [i.e., the combination of
a preliminary "target capture" step with amplification], only specific amplification could be used."
12. The enzymes and primers used in any (Mullis Decl., q1 28.) amplification process can be specific or nonspecific.
13. The primers used in Gen-Probe's specific TMA amplification method have been carefully selected by Gen-Probe's scientists and are generally designed to bind to specific, unique sequences in a DNA or RNA molecule.
14. In amplification processes, sequencespecific primers and enzymes such as those used in TMA play a role substantially different

[^0]
\qquad
S
from the target nucleic acids (or their complementary strands) only if the sequencespecific primers first bind to a single strand of RNA or DNA.
23. If the target organism is not present in the sample, the primers will be unable to bind to the captured sequence and the RT will not initiate synthesis.
24. Another specific primer used in GenProbe's method also includes a specific "promoter" sequence that is recognized by another enzyme ("T7 RNA polymerase") that binds specifically to that promoter sequence to produce many RNA copies by transcription.
25. A functional "T7 promoter" is formed in the course of the TMA process if, and only if, (1) the primer finds and binds to its complementary target sequence in the captured target molecule so that the target sequence is copied by reverse transcriptase and (2) the second primer binds to the newly synthesized DNA and DNA polymerase makes the complementary DNA strand.
26. If this double-stranded, and hence (Longiaru Decl., q 9; Mullins Decl., q35.) functional, T7 promoter is formed as a result of these two primer binding and extension
(Longiaru Decl., © 9; Mullis Decl., đ 35.)

(Longiaru Decl., || 9; Mullis Decl., || 35.)

(Longiaru Decl., \| 7; Mullis Decl., \| 35.)
\qquad
\qquad

\qquad

\qquad
\qquad

\qquad

,

\square

\qquad

processes, then the T7 RNA polymerase used in Gen-Probe's HIV/HCV test will amplify the sequence attached to the T 7 promoter sequence. 27. The T7 RNA polymerase does not amplify (Longiaru Decl., if 9; Mullis Decl., \uparrow (35.) other sequences present in the sample because they are not attached to a T7 promoter sequence.
28. Thus, in Gen-Probe's HIV/HCV test, the T7 (Longiaru Decl., \|f 9; Mullis Decl., \| 35.) polymerase enzyme specifically recognizes the T7 promoter sequence, which has been specifically attached to the target sequence by the binding of specific primers, and the T 7 polymerase specifically amplifies only that sequence.
29. The process repeats in a cyclic fashion, only amplifying the particular target sequence of interest.
30. Gen-Probe's amplification method therefore (Longiaru Decl., \| 10; Mullis Decl., \| 35.) safeguards against amplification of non-target sequences and thus protects against false positive results.
31. TMA functions in way that is substantially (Mullis Decl., If 36.) different than the way in which non-specific amplification functions.
32. Specific amplification methods commonly (Mullis Decl., ๆ1 39.) achieve exponential amplification of the target
(Longiaru Decl., I 10; Mullis Decl., I 35.)
\qquad

\qquad

 sequence, as compared with linear amplification.
33. Sustained, significant, exponential (Mullis Decl., ๆ1 39.) amplification is a hallmark of specific amplification methods.
34. In contrast, the non-specific amplification (Mullis Decl., $\mathbb{1} 40$.) methods of Examples 4 and 5 of the ' 338 patent admittedly achieve only linear amplification, not exponential amplification.
35. The non-specific amplification methods of (Mullis Decl., 1141.) Examples 5 and 6 also cannot achieve exponential amplification. Because random primers bind at various places along the nucleic acids present in the sample, the products of amplification are fragmented.
36. If these products were then subjected to (Mullis Decl., Il 40.) another round of non-specific amplification, the resulting products would be smaller still.
37. Multiple rounds of non-specific (Mullis Decl., If 40.) amplification thus diminish rapidly in efficiency, whereas multiple rounds of specific amplification produce extraordinarily large amounts of full size product nucleic acids in very short periods of time.
38. Non-specific amplification using random hexamer primers results in fragmented nucleic
acids, each of which contains the random sequences present in the primers.
39. The resulting products are thus (Mullis Decl., © 41.) heterogeneous and have undefined composition.
40. Such nucleic acids are unsuitable for most (Mullis Decl., 1 41.) of the purposes for which homogeneous, specifically amplified nucleic acids of known composition are employed.
41. As a result, Gen-Probe's TMA method also does not yield the same result as that obtained with non-specific amplification.
42. The Court has previously noted that the specification of the ' 338 patent contains no reference to any specific amplification techniques. To the contrary, the specification clearly suggests that the claimed amplification techniques of the invention don't require the use of specific primers necessary for specific amplification.
43. This absence in the ' 338 patent of any

See, '338 patent, Exh. 2^{2} col. 30, 11. 14-18, col.
30, 11. 30-40.

Lawrie Depo., Exh. 3, at 178:19-180:11. disclosure of specific amplification techniques was not accidental or unintended. To the contrary, Gene-Trak Systems, Vysis' predecessor-in-interest, and its employed

[^1] inventors were well aware of the specific amplification techniques such as PCR. In fact, the admitted focus of the inventors' effort leading to the disclosure in the ' 338 patent was to find something "different" from specific amplification. For example, inventor Jon Lawrie testified that the patent was meant to cover new amplification methods using non-specific primers, not already-known methods such as PCR:
Q. Can you recall any reason that a reference to PCR might have been intentionally omitted from the patent application?
A. Yes....
Q. If there's no reference in the ['338] patent to combining target capture with PCR, do you have any explanation as to why it is not there?
A. I believe that it was a separate, the thought behind this [referring to the ' 338 patent] was coming up with new methods of amplification, not old ones.
Q. For the purposes of what you just said you classify PCR as an old method of amplification?
A. PCR itself was described in the patent, issued patent [e.g., it was an "old" method].
Q. And your understanding of the 338 patent was that it was directed to other methods of amplification?
A. The, it was, it was directed to

the methods disclosed by, you know, the methods separate from PCR.
44. Inventor King also stated the inventors' purpose and also distinguished non-specific amplification from PCR:
Q. From a high level perspective, what were the discussion topics addressed during this meeting?
A. I think that at the highest level we were looking for amplification methods that did not involve PCR amplification.
(King Depo. At 45:10-15 (emphasis added).)
Q. Okay. So the purpose -- the general purpose of the discussion as I understand it that took place at Gene-Trak among the four doctors was to identify -- in general identify an amplification technique that would amplify low concentrations of target nucleic acids in a sample, correct?
A. Yes.
Q. And as I understand your testimony, you wanted to find a technique that was different from PCR, correct?
A. Yes.

King Depo., Exh. 4 at 47:9-20 (emphasis added).
45. As this testimony suggests, PCR was well known to the inventors and the scientific community at large. Dr. Kary Mullis invented PCR in 1983, for which he received the Nobel

Exh. 5 (Saiki et al., "Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia," SCIENCE 230:1350-54 (1985).)

Prize in Chemistry. Dr. Mullis and his colleagues publicly described PCR at a scientific meeting in the summer of 1985 and published their discovery in December 20, 1985.
46. James Richards, Gene Trak's Director of Business Development and Licensing, admits that, within the scientific community, PCR was immediately "big news."
47. One of the reasons that the ' 338 inventors sought to find something "different" from specific amplification techniques such as PCR was due to Gene Trak's concern that it could not obtain a license from Cetus Corp. to use PCR. Cetus Corporation, which employed Dr. Mullis, originally owned the rights to PCR. Gene-Trak sought a license from Cetus, but its requests were rejected.
48. This view of the fundamental difference between non-specific and specific amplification techniques was shared not only between the inventors but with Gene-Trak scientific management as well. In particular, in a letter he wrote in 1989, Dr. Richards, pointedly contrasted the '338 patent's method of nonspecific amplification with other known specific

Richards Depo, Exh. 6, at 38:6-8.

Richards Depo., Exh. 6, at 66:2-15.

Exhibit 7 at page 2, italics added.

[^0]: ${ }^{1}$ All references to the "Longiaru Decl." Refer to the Declaration of Dr. Matthew Longiaru that was submitted on April 30, 2001 in support of Gen-Probe's earlier Motion for Partial Summary Judgment. A true and correct copy of the Longiaru Declaration is attached as Exhibit 1 to the Notice of Lodgment of Exhibits filed concurrently herewith.

[^1]: ${ }^{2}$ Unless otherwise specified, all references to Exhibits shall refer to the exhibits attached to the Notice of Lodgment of Exhibits filed concurrently herewith.

